

KLINGER BALLOSTAR® KHI

DN 150 - 1000

KLINGER FLUID CONTROL

Today for tomorrow

Als Tochterunternehmen der KLINGER Gruppe entwickelt, produziert und revisioniert KLINGER Fluid Control seit mehr als 125 Jahren hochwertige Industriearmaturen am Standort Gumpoldskirchen/Österreich. Über das globale Distributionsund Servicenetz bietet KLINGER Fluid Control sowohl standardisierte als auch maßgeschneiderte Produkte, Dienstleistungen und Lösungen für Kunden auf der ganzen Welt.

Produkte aus dem Hause KLINGER Fluid Control zeichnen sich durch ihre hohe Zuverlässigkeit sowie durch eine überdurchschnittliche Lebensdauer bei gleichzeitig sehr niedrigen Lebenszykluskosten aus. Als Solutions Partner schafft KLINGER Fluid Control Kundennutzen mit Mehrwert. Der Fokus liegt dabei auf den folgenden Kernkompetenzen:

UMFASSENDES SERVICE

- » Anwendungsberatung
- » Produktschulungen
- » Rasche Angebots- und Auftragsabwicklung
- » Kundenspezifische Logistikkonzepte
- » Ersatzteilbevorratung
- » Revision von Armaturen
- » Technischer Support vor Ort

INNOVATIVE LÖSUNGEN

- » Modernste Entwicklungstools
- » Produktentwicklung für unterschiedlichste Anwendungsbereiche
- » Ausarbeitung von kundenspezifischen Speziallösungen
- » Automatisierungslösungen
- » Produkttests im hauseigenen Technikum
- » Vielzahl an Zertifikaten und Zulassungen

EXZELLENTE PROZESSE

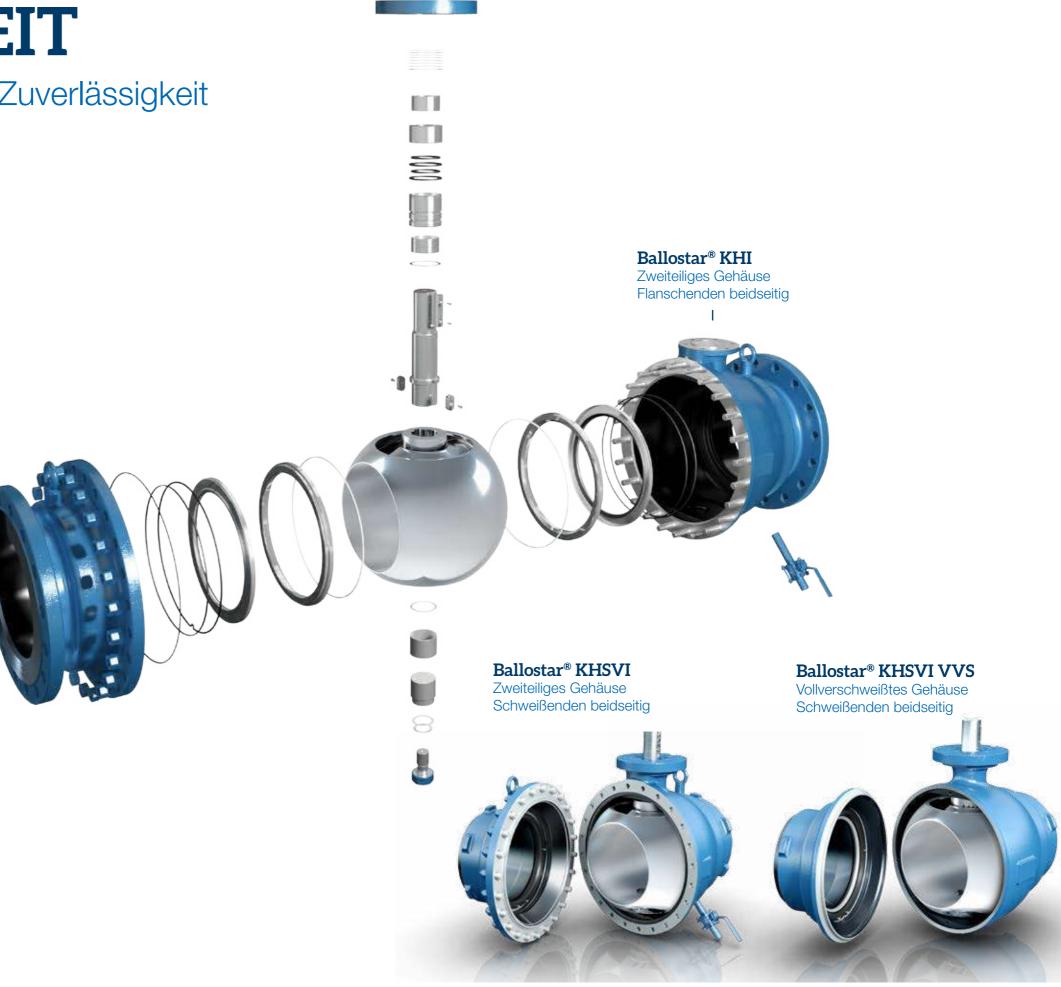
- » Flexible Fertigung
- » Transparente Lieferkette
- » Kurze Lieferzeiten
- » ISO 9001 zertifizierte Qualität
- » ISO 14001 sowie EMAS-zertifiziertes Umweltmanagementsystem

GARANTIERTE LANGLEBIGKEIT

Der Garant für jahrzehntelange Zuverlässigkeit

PRODUKTVORTEILE

- » Wartungsfrei
- » Zertifiziert nach EN 488:2015 (KHSVI VVS)
- » Beidseitig druckbeaufschlagbar
- » Doppelt gelagerte Kugel mit zylindrischem Durchgang
- » Druckschlaggeschützte Dichtelemente
- » Doppelabsperrfunktion mit Zwischenentspannung (TÜV-zertifiziert)
- » Hohe Widerstandskraft gegen Rohrleitungskräfte
- » Jederzeit nachträglich automatisierbar (Kopfflansch nach EN ISO 5211)


SONDER AUSFÜHRUNGEN

- » Hochtemperaturausführung (bis +260 °C)
- » Spezialausführung für Tunnelbohrmaschinen
- » Vorisolierte Ausführung für den Erdeinbau (KHSVI VVS)
- » Kugelsonderbeschichtungen
- » Metallischer Dichtsitz für abrasive Medien
- » Sauerstoffausführung
- » Fire-Safe Ausführung
- » Vakuumausführung
- » Gasausführung
- » Öl-, fett- und silikonfrei

PRODUKTDETAILS

PN	16/25/40
DN	150 - 1000 (KHSVI VVS bis DN 800)
Material	Stahlguss, rost- und säurebeständiger Stahlguss, Sondermaterialien auf Anfrage
Temperatur	-45 °C bis +260 °C
Ausführung	Flansche, Schweißenden, Vollverschweißt (VVS), Konenausführung Voller und reduzierter Durchgang
Bauart	Zweiteiliger Kugelhahn KHI / KHSVI Einteiliger Kugelhahn KHSVI VVS

7 79 7

HÖCHSTE SICHERHEIT

Ballostar® KHI Dichtsystem

Leckagen stellen den "Worst Case" eines jeden Anlagenbetreibers dar. Negative Auswirkungen auf die Umwelt, Personen- sowie Sachschäden, Betriebsausfälle und mitunter massive wirtschaftliche Einbußen sind nur einige der möglichen Folgeschäden. Eine Dichtung, die somit "hält" was sie verspricht – nämlich ob die Armatur ihre Absperrfunktion zuverlässig erfüllt – ist oberstes Gebot. Im KLINGER Ballostar® KHI wird das gleich mehrfach sichergestellt: Durch das einzigartige Dichtsystem und die "Double Block & Bleed" -Funktion.

FUNKTIONSPRINZIP

Der Kugelhahn garantiert durch sein "elastisches Dichtsystem" sowohl bei hohen als auch bei niedrigen Drücken absolute Dichtheit. Diese wird durch zwei federnde Dichtelemente erreicht, welche unabhängig voneinander arbeiten. Kommt es zum Anstieg des Differenzdrucks, so steigen auch die zusätzlichen Anpresskräfte – die vorgespannten Membranfedern, welche die Dichtringe gegen die Kugel pressen, werden dadurch entlastet und die Standzeiten somit weiter verbessert. (Abb.1)

Abb. 1

WIRKUNGSWEISE

Das Dichtsystem an der Kugel wird beim Zusammenbau elastisch vorgespannt. Die beiden vorgespannten federnden Dichtelemente aus rostfreiem Stahl mit den Dichtringen sowie einer Rückdichtung (bestehend aus U-Manschette und O-Ring) bilden gemeinsam mit der Kugel ein- und ausgangsseitig der Armatur ein System. Ein Stützring schützt das federnde Dichtelement zudem vor Überlastung, etwa durch Druckstöße. Ein Drahtring übernimmt die Sicherung der Dichtungseinheit. (Abb. 2)

Der Kugelhahn kann in beiden Durchflussrichtungen beaufschlagt werden. Die Elastizität der Dichtelemente ermöglicht den Ausgleich von Wärmedehnungen. Zusätzlich wird durch diese Funktion erreicht, dass ständig zwei primäre Dichtstellen im Durchgang vorhanden sind.

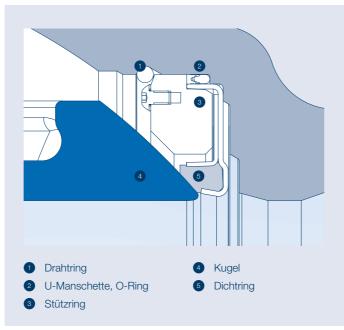


Abb. 2

DOUBLE BLOCK & BLEED

Eine "Double Block & Bleed"-Anordnung wird üblicherweise über zwei separate Armaturen realisiert, diese können jedoch durch den Einsatz eines einzigen KLINGER Ballostar® KHI Kugelhahns ersetzt werden. Neben Kosten- und Zeitersparnis ist das gerade in Bereichen mit wenig Platz für den Einbau von enormer Bedeutung. In puncto Sicherheit und Dichtheit überzeugt der KLINGER Ballostar® KHI im Gegensatz zu herkömmlichen "Double Block & Bleed"-Lösungen – in beiden Strömungsrichtungen, unter verschiedensten Betriebsbedingungen, selbst im Vakuum. Zudem wird bei Ballostar® KHI Kugelhähnen nicht nur die Kugelfläche, sondern das gesamte Dichtelement (Kugel und Fläche der Membranfeder) vom Mediendruck beaufschlagt.

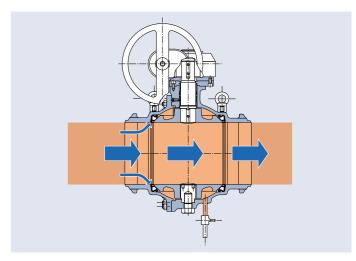
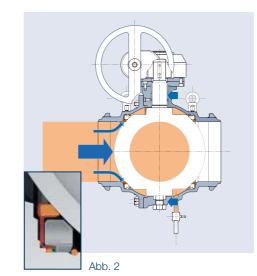
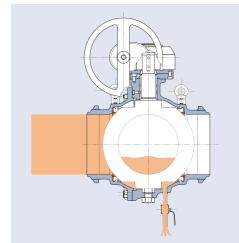




Abb. 1

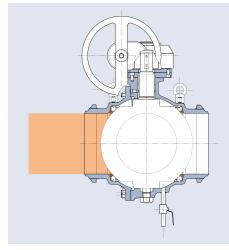


Abb. 4

FUNKTIONSPRINZIP

Ausgangspunkt für die Erklärung der Funktionsweise des Ballostar® KHI ist die geöffnete Armatur (Abb. 1): Das Medium fließt bei geschlossenem Prüf- und Entleerungshahn durch die offene Kugel. Nun wird die Armatur geschlossen (Abb. 2), das Medium sammelt sich durch den Schließvorgang im Kugelhahntotraum. Die Entleerung erfolgt über das Öffnen des Prüf- und Entleerungshahns (Abb. 3). Aus dieser

Abb. 3

Anordnung heraus lässt sich auch rasch und unkompliziert die Funktion des Dichtelements überprüfen: Der Totraum ist entleert, die Dichtelemente sorgen für die Dichtheit der Armatur – ein weiterer Mediumsaustritt ist somit ausgeschlossen. Bei Bedarf kann nun bei geschlossener Armatur und nach wie vor geöffnetem Prüf- und Entleerungshahn (Abb. 4) die Rohrleitung an der mediumsfreien Seite aufgetrennt bzw. an dieser gefahrenlos gearbeitet werden.

ZERTIFIZIERTE QUALITÄT

Der KLINGER Ballostar® KHI hält, was er verspricht

Der KLINGER Ballostar® KHI lässt hinsichtlich seiner Einsatzmöglichkeiten keine Fragen offen. Das belegen unterschiedliche Prüfungen und Zertifizierungen – für Anlagenbetreiber bedeutet das absolute Betriebssicherheit bei garantierter Dichtheit.

» EN 488:2015 KHSVI VVS

KLINGER Ballostar® KHSVI VVS Kugelhähne, DN 150 bis 800, sind unter Berücksichtigung der erweiterten Anforderungen der EN 488:2015 erfolgreich geprüft und vom TÜV Austria zertifiziert.

» Fire-Safe

Der Fire-Safe-Test nach API Standard 607, 4. Edition und EN ISO 10497:2004 ist vom Lloyd's Register bzw. TÜV Austria zertifiziert.

» Bestätigung der Dichtkammer beim KHI

Der KLINGER Ballostar® KHI stellt eine sichere Absperrung für den Betrieb in Dampfkesseln im Sinne des Punktes 6231 TRD 601 B12 dar.

» Gaszulassung

ÖVGW-Zertifikat zur Führung der ÖVGW-Qualitätsmarke Gas für die Kugelhähne GKHI, GKHSVI und GKHSVI VVS, DN 150 bis 800.

» Verwendung für gasförmigen Sauerstoff

Die BAM Berlin hat die Zulassung der Kugelhahnserie Ballostar® KHI zur Verwendung für gasförmigen Sauerstoff bei Betriebsdrücken bis 16 bar und Betriebstemperaturen bis 60 °C erteilt.

» Emissionsprüfung nach VDI 2440

Zertifizierte Emissionsprüfung nach VDI 2440 für Ballostar[®] KHI / KHSVI Kugelhähne bei Temperaturen von < 250 °C.

» Druckgeräterichtlinie 2014/68/EU

Die Ballostar® KHI, KHSVI und KHSVI VVS Kugelhähne werden nach den gültigen Normen der Druckgeräterichtlinie 2014/68/EU entwickelt, produziert, geprüft und ausgeliefert.

HÖCHSTE ANFORDERUNGEN

Zertifizierung nach EN 488:2015

Um die Betriebssicherheit zu steigern, werden die Anforderungen an erdverlegte Absperrarmaturen stetig erhöht. Ermöglicht wird das durch den Einsatz spezieller Armaturen mit besonders steifen und verformungsfreien Gehäusen. Die entsprechenden technischen Anforderungen und Prüfverfahren für direkt in Fernwärmenetze erdverlegte Absperrarmaturen sind in der EN 488 definiert.

Bereits in der Vorgängerversion der Norm aus dem Jahr 2011 wurden erhöhte Druckkräfte sowie neue Biegemomente für Armaturen definiert, Zugkräfte hingegen blieben unverändert. In der aktuellen Version sind erneut einige

Anforderungen im Vergleich zu 2011 verschärft worden. Beispielsweise wurde die Zahl der Betätigungen während der Typprüfung erhöht, alle Prüfungen müssen an ein und derselben Armatur durchgeführt werden. Zudem muss der Abschluss der letzten 100 mm der Spindel-/ Schaftkonstruktion korrosionsgeschützt ausgeführt sein.

KLINGER Ballostar® KHSVI VVS Kugelhähne wurden auf dem werkseigenen Multifunktionsprüfstand unter Berücksichtigung der erweiterten Anforderungen der EN 488:15 erfolgreich geprüft und vom TÜV Austria zertifiziert.

BALLOSTAR® KHI

Typenübersicht

BALLOSTAR® KHI

Flanschausführung, voller Durchgang

ALLGEMEINE MERKMALE

- » 2-teiliger Kugelhahn mit vollem Durchgang
- » Doppelt gelagerte Kugel
- » Bidirektional dichtend
- » Hohe Widerstandskraft gegen Rohrleitungskräfte

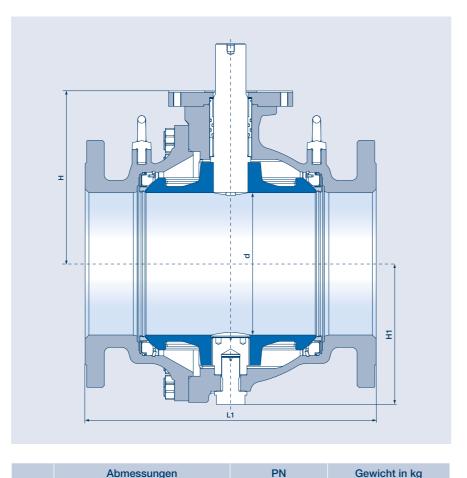
ANSCHLÜSSE

Flansche nach EN 1092-1 (bis DN 400) und DIN 2544 (ab DN 500)

ABMESSUNGEN

Baulängen nach EN 558, GR 12

ABNAHMEPRÜFUNG


- » Sitzdichtheit: EN 12266-1 P12, Leckrate A
- » Dichtheit nach außen: EN 12266-1 P11
- » Festigkeit: EN 12266-1 P10

AUTOMATISIERUNG

Flanschanschluss nach ISO 5211 ermöglicht Direktaufbau eines Antriebs oder mittels Konsole. Pneumatische und elektrische Antriebe möglich.

TEMPERATUR

-45 °C bis +200 °C (siehe pT-Diagramm)

VШ	V/V D	$\mathbf{I} \mathbf{A} \mathbf{N} \mathbf{I}$	TEN

VOLLER DURCHGANG DN 150-800

Material: Stahlguss 1.0619 (Werkstoffkennziffer VII, VIII) Edelstahlguss 1.4408 (Werkstoffkennziffer X, Xc)

DN	L1	H1	Н	d	VII	Χ	Xc	bei PN 25	bei PN 40
150*	394	171	497	150	25/40	40	25	85	85
200*	457	222	257	200	25/40	40	25	150	160
250	533	264	327	250	25/40	40	25	220	240
300	610	294	352	300	25/40	40	25	380	410
350	686	356	443	350	25/40	40	25	580	620
400	762	376	462	380	25/40	40	25	800	856
500	914	468	563	475	25/40		25	1,200	1,330
600	1,067	533	667	585	25/40			1,750	1,863
700	1,245	640	789	686	25/40			3,100	3,350
800	1,372	710	886	782	25/40			4,850	5,055

Abmessungen

BALLOSTAR® KHI

Flanschausführung, reduzierter Durchgang

ALLGEMEINE MERKMALE

- » 2-teiliger Kugelhahn mit reduziertem Durchgang
- » Doppelt gelagerte Kugel
- » Bidirektional dichtend
- » Hohe Widerstandskraft gegen Rohrleitungskräfte

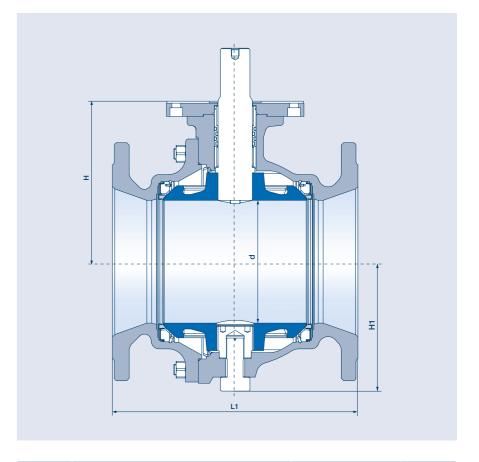
ANSCHLÜSSE

Flansche nach EN 1092-1

ABMESSUNGEN

Baulängen nach EN 558, GR 27

ABNAHMEPRÜFUNG


- » Sitzdichtheit: EN 12266-1 P12, Leckrate A
- » Dichtheit nach außen: EN 12266-1 P11
- » Festigkeit: EN 12266-1 P10

AUTOMATISIERUNG

Flanschanschluss nach ISO 5211 ermöglicht Direktaufbau eines Antriebs oder mittels Konsole. Pneumatische und elektrische Antriebe möglich.

TEMPERATUR

-45 °C bis +200 °C (siehe pT-Diagramm)

KHI VARIANTEN

REDUZIERTER DURCHGANG DN 150/125-300/250

Material: Stahlguss 1.0619 (Werkstoffkennziffer VII, VIII) Edelstahlguss 1.4408 (Werkstoffkennziffer X. Xc)

		Abmes	sungen	Р	N	Gewicht	
DN	L1	H1	Н	d	VII	Xc	in kg

150/125	350	160	185	125	25/40	25/40	76
200/150	400	171	197	150	25	25	105
250/200	450	222	257	200	25	25	177
300/250	500	264	327	250	25	25	254

^{*} DN 150 - 200 mit Hahngriff verfügbar

BALLOSTAR® KHSVI

Schweißenden, voller Durchgang

ALLGEMEINE MERKMALE

- » 2-teiliger Kugelhahn mit vollem Durchgang
- » Doppelt gelagerte Kugel
- » Bidirektional dichtend
- » Hohe Widerstandskraft gegen Rohrleitungskräfte

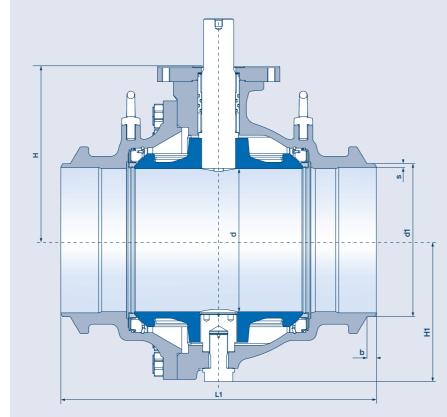
ANSCHLÜSSE

Anschweißenden nach Kundenwunsch

ABMESSUNGEN

Baulängen nach ANSI B16.10 Class 300 und EN 12982, GR 63

ABNAHMEPRÜFUNG


- » Sitzdichtheit: EN 12266-1 P12, Leckrate A
- » Dichtheit nach außen: EN 12266-1 P11
- » Festigkeit: EN 12266-1 P10

AUTOMATISIERUNG

Flanschanschluss nach ISO 5211 ermöglicht Direktaufbau eines Antriebs oder mittels Konsole. Pneumatische und elektrische Antriebe möglich.

TEMPERATUR

-45 °C bis +200 °C (siehe pT-Diagramm)

KHSVI VARIANTEN

VOLLER DURCHGANG DN 150 - 1000

Material: Stahlauss 1.0619 (Werkstoffkennziffer VII, VIII)

	Ab	omessun	gen		Anschlus	smaße		PN	Gewicht
DN	L1	H1	Н	d	d1	s*	b	VII	in kg
150**	457	171	268	150	168,3	6,65	20	25/40	68
200**	521	222	343	200	219,1	8,05	20	25/40	130
250	559	264	327	250	273	8,5	20	25/40	200
300	635	294	352	300	323,9	9,45	20	25/40	355
350	762	356	443	350	355,6	10,8	20	25/40	555
400	838	376	462	380	406,4	10,2	25	25/40	760
500	991	468	563	475	508	16	25	25/40	1.150
600	1.143	533	667	585	610	17,5	25	25/40	1.700
700	1.346	640	789	686	711	17,5	25	25/40	3.000
800	1.524	710	886	782	813	19	25	25/40	4.700

1000 1.981 860 1.034 980 1.016 10 25 25/40 7.480

BALLOSTAR® KHSVI

Schweißenden, reduzierter Durchgang

ALLGEMEINE MERKMALE

- » 2-teiliger Kugelhahn mit reduziertem Durchgang
- » Doppelt gelagerte Kugel
- » Bidirektional dichtend
- » Hohe Widerstandskraft gegen Rohrleitungskräfte

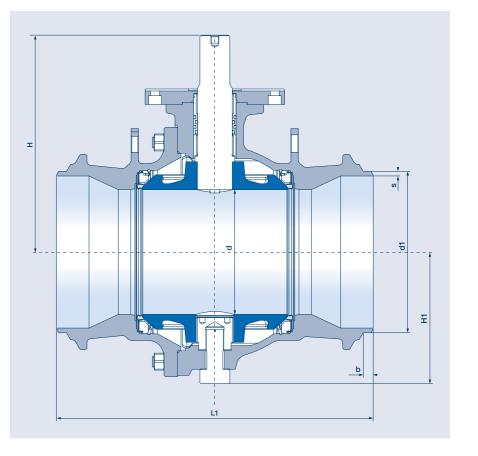
ANSCHLÜSSE

Anschweißenden nach Kundenwunsch

ABMESSUNGEN

Baulängen nach ANSI B16.10 Class 300 und EN 12982, GR 63

ABNAHMEPRÜFUNG


- » Sitzdichtheit: EN 12266-1 P12, Leckrate A
- » Dichtheit nach außen: EN 12266-1 P11
- » Festigkeit: EN 12266-1 P10

AUTOMATISIERUNG

Flanschanschluss nach ISO 5211 ermöglicht Direktaufbau eines Antriebs oder mittels Konsole. Pneumatische und elektrische Antriebe möglich.

TEMPERATUR

-45 °C bis +200 °C (siehe pT-Diagramm)

KHSVI VARIANTEN

REDUZIERTER DURCHGANG DN 300/250 - 800/700

Material: Stahlguss 1.0619 (Werkstoffkennziffer VII, VIII)

	Abmessungen				Anschlu	ıssmaße	PN	Gewicht	ı	
DN	L1	H1	Н	d	d1	s*	b	VII	in kg	

300/250	635	264	327	250	323,9	9,45	20	25/40	232
350/300	762	294	352	300	355,6	10,8	20	25/40	405
400/350	838	356	443	350	406,4	10,2	25	25/40	610
500/400	991	376	462	380	508	16	25	25/40	860
600/500	1.143	468	563	475	610	17,5	25	25/40	1.280
700/600	1.346	533	667	585	711	17,5	25	25/40	1.850
800/700	1.524	640	789	686	813	19	25	25/40	3.350

^{*} Standard Dimension, jedoch auch beliebig nach Kundenwunsch konfigurierbar

^{*} Standard Dimension, jedoch auch beliebig nach Kundenwunsch konfigurierbar.

^{**} Antriebsflanschdarstellung siehe Seite 20

BALLOSTAR® KHSVI

Schweißenden und Reduzierkonen

ALLGEMEINE MERKMALE

- » 2-teiliger Kugelhahn mit Reduzierkonen
- » Doppelt gelagerte Kugel
- » Bidirektional dichtend
- » Hohe Widerstandskraft gegen Rohrleitungskräfte

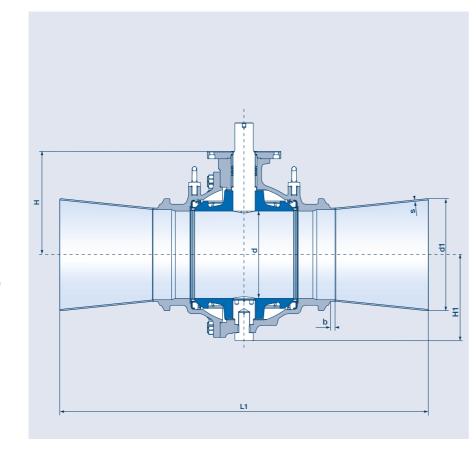
ANSCHLÜSSE

Anschweißenden nach Kundenwunsch

ABMESSUNGEN

Sonderbaulängen gemäß unten angeführter Tabelle

ABNAHMEPRÜFUNG


- » Sitzdichtheit: EN 12266-1 P12, Leckrate A
- » Dichtheit nach außen: EN 12266-1 P11
- » Festigkeit: EN 12266-1 P10

AUTOMATISIERUNG

Flanschanschluss nach ISO 5211 ermöglicht Direktaufbau eines Antriebs oder mittels Konsole. Pneumatische und elektrische Antriebe möglich.

TEMPERATUR

-45 °C bis +200 °C (siehe pT-Diagramm)

KHSVI VARIANTEN

REDUZIERKONEN DN 600/500 - 1200/1000

Material: Stahlguss 1.0619
(Werkstoffkennziffer VII, VIII)

DN	L1	H1	Н	d	d1	S	b	VII	in kg
600/500	2.011	468	563	475	610	7	25	40	1.264
700/600	2.367	533	667	585	711	8	25	40	1.860
800/700	2.570	640	789	686	813	8	25	40	3.184
900/800	2.748	710	886	782	914	10	25	40	4.960
1000/800	2.748	710	886	782	1.016	10	25	40	4.980
1200/800	2.950	710	886	782	1.220	12	25	40	5.070
1200/1000	3.407	860	1.034	980	1.220	12	25	40	7.950

BALLOSTAR® KHSVI VVS

Vollverschweißt, voller Durchgang

ALLGEMEINE MERKMALE

- » Einteiliger Kugelhahn mit vollem Durchgang
- » Doppelt gelagerte Kugel
- » Bidirektional dichtend
- » Hohe Widerstandskraft gegen Rohrleitungskräfte

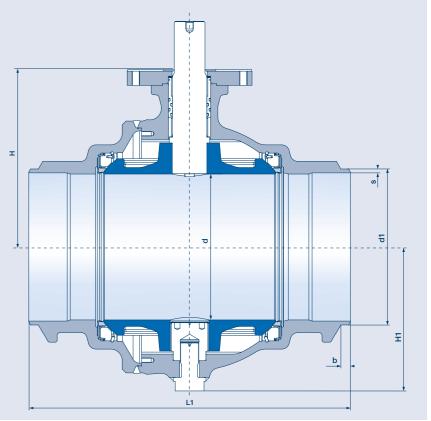
ANSCHLÜSSE

Anschweißenden nach Kundenwunsch

ABMESSUNGEN

Baulängen nach ANSI B16.10 Class 300 und EN 12982, GR 63

ABNAHMEPRÜFUNG


- » Sitzdichtheit: EN 12266-1 P12, Leckrate A
- » Dichtheit nach außen: EN 12266-1 P11
- » Festigkeit: EN 12266-1 P10

AUTOMATISIERUNG

Flanschanschluss nach ISO 5211 ermöglicht Direktaufbau eines Antriebs oder mittels Konsole. Pneumatische und elektrische Antriebe möglich.

TEMPERATUR

-45 °C bis +200 °C (siehe pT-Diagramm)

KHSVI VVS VARIANTEN

VOLLER DURCHGANG DN 150 - 800

Material: Stahlguss 1.0619 (Werkstoffkennziffer VII, VIII)

Abmessungen Anschlussmaße PN Gewicht												
DN	L1	H1	Н	d	d1	s*	b	VII	in kg			
150**	457	171	268	150	168,3	6,65	20	25/40	68			
200**	521	222	343	200	219,1	8,05	20	25/40	130			
250	559	264	327	250	273	8,5	20	25/40	197			
300	635	294	352	300	323,9	9,45	20	25/40	277			
350	762	356	443	350	355,6	10,8	20	25/40	442			
400	838	376	462	380	406,4	10,2	25	25/40	580			
500	991	468	563	475	508	16	25	25/40	990			
600	1.143	533	667	585	610	17,5	25	25/40	1.650			

1.346 640 789 686 711 17,5 25

1.524 710 886 782 813 19

2.690

^{*} Standard Dimension, jedoch auch beliebig nach Kundenwunsch konfigurierbar

^{**} Antriebsflanschdarstellung siehe Seite 20

SONDER-LÖSUNGEN

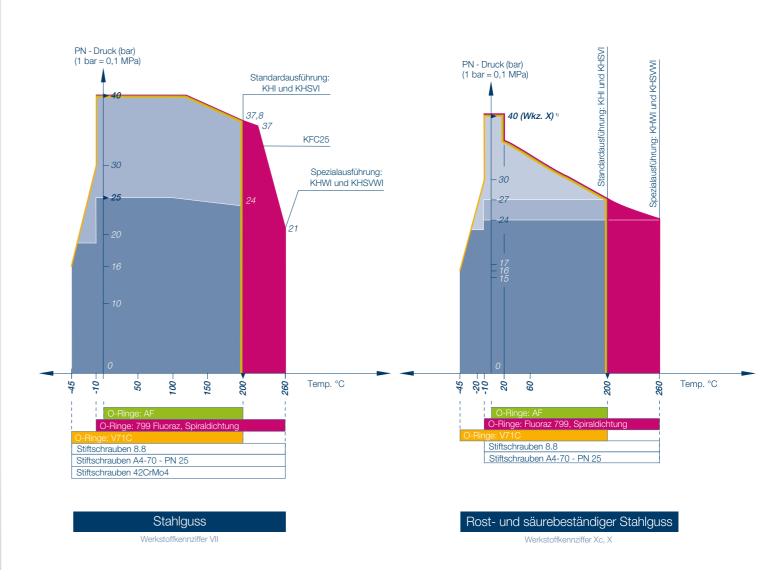
Erdeinbau

Die KLINGER Ballostar® KHSVI VVS Kugelhähne, zertifiziert nach EN 488:2015, sind durch ihre robuste Konstruktion ideal für den Einsatz im Erdeinbau geeignet. Die Kugelhähne können dafür unter anderem mit folgenden Optionen erweitert werden:

- » Obenliegendes, fest angebautes Getriebe inkl. Stellungsanzeige mit starrer Erdeinbauverlängerung in diversen Längen
- » Untenliegendes, fest angebautes Erdeinbaugetriebe mit teleskopierbarer Verlängerung inkl. Stellungsanzeige zur einfachen Anpassung an die Erddecke
- » Beidseitig verlängerte Anschweißenden nach DIN EN 12627 und Isolierung für KMR-Systeme, inkl. Leckwarnsystem nach Wahl
- » Diverse Ausführungen von Entleerungs-/Entlüftungsstutzen mit Kugelhähnen und Isolierung

Schaltwellenverlängerung in diversen Längen mit mechanischem Getriebe

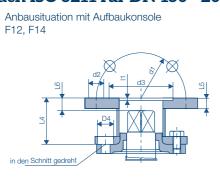
EINSATZ-BEREICHE

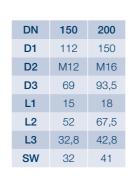

Druck- und Temperaturdiagramme

Die angegebenen Temperaturen sind Grenzwerte, die immer in Zusammenhang mit dem Medium und dem jeweiligen Betriebsdruck zu betrachten sind. Die zulässigen Dauertemperaturen liegen stets innerhalb dieser Grenzwerte.

1) Werkstoffkennziffer X = säurebeständiger, rostfreier Stahl: Verbindungsschrauben 8.8 Fe/Ni 5P (oder gleichwertig)

Werkstoffkennziffer Xc = alle Teile bestehen aus Edelstahl

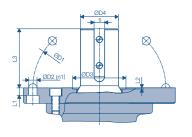


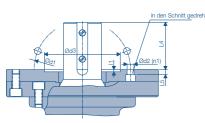

TECHNISCHE DETAILS

Automatisierung und Antriebsauslegung

Anschlussflansche nach ISO 5211 für DN 150 - 200

DN	15	50	200		
	F12	F14	F12	F14	
L4	76	71	80	86	
L5	15	15	14	20	
L6	24	19	12,5	18,5	
D4	25	25	30	30	
d1	125	140	125	140	
d2	14	18	14	18	
d3	85	100	85	100	
11	4	5	4	5	


Anschlussflansche nach ISO 5211 für DN 250 - 1000 Drehmomente


DN	250/300	350/400	500/600	700/800	1000
D1	240	280	350	500	590
D2	18	22	22	33	39
D3	110,2	140,3	140,3	260,1	300,1
D4	60	80	100	140	180
L1	13,5	19,5	19,5	19	19
L2	3	3	3	5,1	5,1
L3	108	128	155	193	237
n1	4	4	8	8	12
S	18	22	28	36	45

ISO 5211	F16 F25	F25	F25 F30	F35	F40 F48
L4	77	97	124	148	180
L5	9,5 13,5	13,5	13,5 10,5	13	19
d1	165 254	254	254 298	356	406 483
d2	22 18	18	18 22	33	39
d3	130 200	200	200 230	260	300 370
11	6	6	6	6	9
n2	4 8	8	8 8	8	8 12

Anbausituation mit freiem Wellenende

Anbausituation mit Zwischenplatte

KFC-SITZRING

Nennweite	Differenzdruck (bar)		
DN	25	40	
mm	Drehmoment (Nm)		
	05.1		
150	651	1.260	
200	1.069	1.757	
250	2.083	2.905	
300	3.710	5.733	
350	5.068	7.063	
400	6.251	7.987	
500	8.701	11.655	
600	13.020	15.540	
700	19.320	27.510	
800	31.395	36.960	
1000	45.000	60.000	

METALLISCHER SITZ

Nennweite	Differenzdruck (bar)	
DN	16	25
mm	Drehmoment (Nm)	
150	882	1.176
200	1.372	1.764
250	2.646	3.528
300	4.998	6.272
350	6.958	8.624
400	8.526	10.192
500	10.668	14.063

TECHNISCHE DETAILS

Strömungskennwerte zur Bestimmung der Nennweite

Kugelhahngröße

Durchflussmenge Q in m³/h Druckverlust Δp in bar Dichte p in kg/m³ Geschwindigkeit p in m/s Durchflusskoeffizient p in m³/h Druckverlustkoeffizient p in m³/h

Die Armatur ist so auszuwählen, dass der $\mathbf{K}_{\mathbf{v}}$ -Wert größer, beziehungsweise der ζ -Wert kleiner als der errechnete Wert ist.

Damit errechnet sich:

$$K_{v} = Q * \sqrt{\frac{\rho}{1000 * \Delta \rho}}$$

oder

$$\zeta = \frac{2 * \Delta p * 10^5}{\rho_{*w^2}}$$

Strömungswerte

VOLLER DURCHGANG

DN (mm)	ζ	K _{vs} -Wert
150	0,045	4.203
200	0,04	8.131
250	0,033	13.630
300	0,030	20.590
350	0,027	29.540
400	0,03	38.582
500	0,025	59.978
600	0,025	95.695
700	0,025	118.940
800	0,025	154.245
1000	0,025	242.900

REDUZIERTER DURCHGANG

DN (mm)	ζ	$\mathbf{K}_{vs} ext{-Wert}$
150/125	0,3	1.642
200/150	0,3	2.920
250/200	0,29	4.640
300/250	0,29	6.682
350/300	0,28	9.256
400/350	0,28	12.090
500/400	0,26	19.064
600/500	0,26	28.230
700/600	0,25	39.186
800/700	0,25	51.182

REDUZIERKONEN

DN (mm)	ζ	$\mathbf{K}_{vs} ext{-Wert}$
500/400	0,060	39.837
600/500	0,055	60.565
700/600	0,052	84.698
800/700	0,048	115.932
900/800	0,045	150.652
1000/800	0,224	83.886
1200/1000	0,127	161.700

Im metrischen Maßsystem ist die charakteristische Kenngröße für Absperr- und Regelorgane der Kv-Wert. Die in der Tabelle angegebenen Werte gelten für das Durchflussmedium H_2O mit einer Temperatur von 5 - 30 °C, einer Dichte von 1000 kg/m^3 und einem Druckverlust p=1 bar an der Armatur.

In Ländern mit Zollsystem gilt als Kenngröße der C_V-Wert. Dieser gibt an, wie viel US gal/min H₂O mit einer Temperatur von 60 °F bei einem Druckverlust von 1 psi durch die Armatur fließen.

$$\Delta p = \zeta * \frac{\rho}{2} * w^2 * 10^{-5}$$

oder

$$\Delta p = \left(\frac{Q}{K_{\rm H}}\right)^2 * \frac{\rho}{1000}$$

PRODUKT-ÜBERSICHT

Klinger Portugal, Lda. Via José Régio, 36 Centro Empresarial Vilar do Pinheiro 4485-860 Vila do Conde T: +351 22 947 0910 E-mail: geral@klinger.pt