

Rubber-Metal-Gaskets - Safe sealing of gases and liquids

Rubber-Metal-Gaskets - Safe sealing of gases and liquids

Rubber-Metal-Gaskets - Safe sealing of gases and liquids

With the following media

- Water
- Gas
- Waste water
- Chemicals

With the following flanges made of

- Steel/stainless steel
- Cast iron
- GRP
- PP/ PVC/ PE

1 KLINGER®KGS

Above-ground and underground pipelines in the gas and water area.

For slightly damaged and not always correctly routed pipelines.

2 KLINGER®KGS/S

For enamelled flanges of pipes and apparatus.

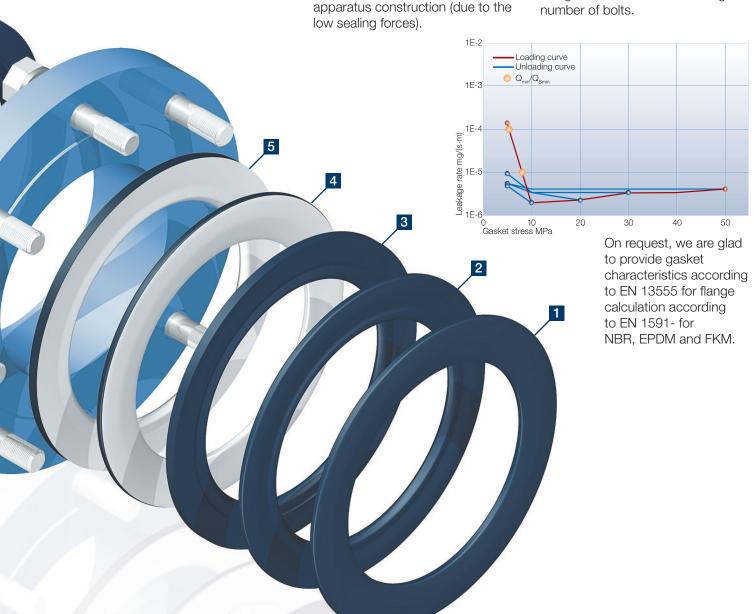
For rubber-coated flanges of pipes and apparatus.

Pipeline construction in the gas and water area.

3 KLINGER®KGS/TK

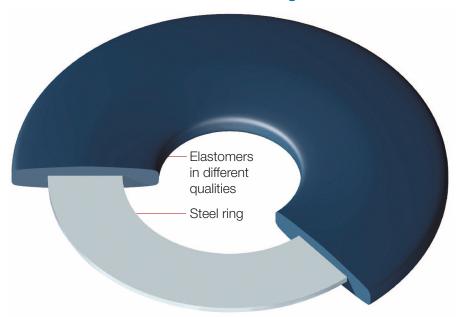
Suitable for the plastic apparatus construction (due to the

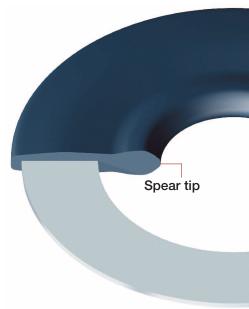
4 KLINGER®KGS-Flon 5 KLINGER®KGS/TK-Flon


Variant for KGS and KGS/TK with PTFE-envelope.

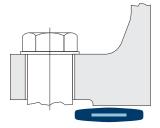
Use in chemistry and the food industry.

6 KLINGER®KNS compression stop


For the pipeline and apparatus construction in the gas and water area.


A gasket with a compression stop is necessary at large diameters to cover the enormous forces at the flange, resulting from the pipe elongations tensions and the high

Rubber-Metal-Gaskets according to DIN EN 1514-1, Shape IBC



KLINGER®KGS

Rubber gasket, lenticular shape, rounded edges.

Steel ring, chemically treated, no possibility to separate the elastomers from the steel core. Suitable for flanges made of metal.

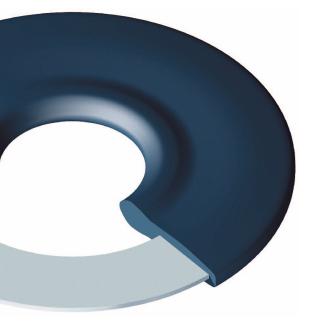
- Self-centering with the same flange DN and PN
- appropriate tightening torques
- self-limiting compression surface
- rigid gasket, easy to install
- soft surface in order to seal slightly damaged flange surfaces
- blow-off proof
- Materials of KLINGER®KGS: NR, NBR, EPDM, CSM, FKM
- Dimensions according to EN 1514-1 depending on DN: PN 6 to PN 40 DN 15 up to DN 2000
- For approvals see material table

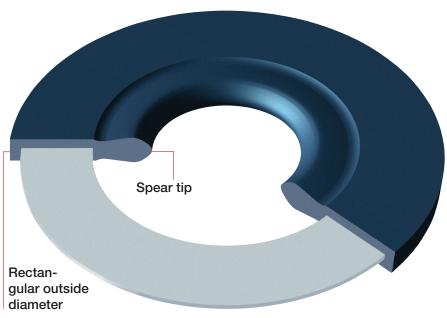
Ordering example: KLINGER®KGS made of NBR acc. to DIN EN 1514-1, Shape IBC DN 100,

PN 10-16

KLINGER®KGS/S

Rubber gasket,


Lenticular shape at the sealing body, with integrally molded spear tip at the inside diameter of the gasket, rounded edges. The spear tip provides higher safety at lowest contact pressures..


Suitable for installation between flanges made of metal and plastic.

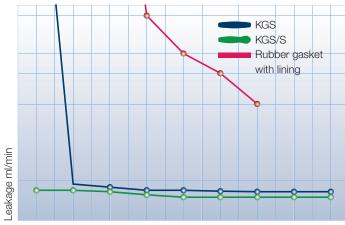
- Self-centering with the same flange DN and PN
- Minimum tightening torques and smaller than KGS (see diagram on the right)
- Materials of KLINGER®KGS/S: NBR, EPDM, FKM, EPDM fire resistant
- Dimensions according to EN 1514-1 depending on DN: PN 10 to PN 40 DN 15 up to DN 1000
- For approvals see material table

Rubber-Metal-Gaskets according to DIN EN 1514-1, Shape IBC

Ordering example:

KLINGER®KGS/S made of NBR acc. to DIN EN 1514-1, Shape IBC DN 100, PN 10-16

KLINGER®KGS/TK


Rubber gasket, flat shape at the sealing body, with integrally molded spear tip at the inside diameter of the gasket, rectangular outside diameter.

The spear tip provides higher safety at lowest contact pressures.

- suitable for flanges made of plastics such as PE, PP, GRP, PVC
- Self-centering with the same flange DN and SDR
- Reduced dead space
- Tight, also at low tightening torques
- Materials of KLINGER®KGS/TK: NBR, EPDM, FKM
- Dimensions according to the valid European standards for plastic tubes made of PE, PP, PVC, PVDF and GRP (mainly SDR 11,17 and 33)
- For approvals see material table

KLINGER®KGS/TK made of EPDM DN100 / OD 110 SDR17 105 x 162

Thightening force / Surface pressure

Materials of rubber-metal-gaskets

Materials

NIR

NBR

Media containing hydrocarbon

Field of application

Water Circuit water Diluted alkalis up to max. 50% and max. 80°C

Water Black

Waste water

Colour

Black

from -15°C to +100°C

Temperature

approx. +80°C, short-term up to +90°C

DVGW Certificate acc. to EN 682 GBL

EN 681-1 WG Class 70 EN 682 GBL Class 70

TA-Luft

(German Clean Air Act)

Certificates

EN 681 -1 WC Class 70

Applications

NR vulcanized materials can be used where noncritical media have to be sealed. Higher temperatures than 90°C have to be avoided. Applications of NBR vulcanized materials result from the listed characteristics, such as resistance against aliphatic carbohydrates, mineral oils, greases fuels.

Materials of rubber-metal-gaskets

EPDM

Drinking water
Waste water
Process water, on consultation

Black

from -40°C to +110°C, short-term up to +130°C

EN 681 -1 WAL/WCL Class 70 Elastomer Guideline (new KTW) DVGW W270 ACS, WRAS (BS6920) FDA Certificate TA-Luft (German Clean Air Act)

Applications of EPDM vulcanized materials mainly result from the good resistance to chemicals. Furthermore, the EPDM quality has a good resistance against ozone and aging. CSM

Application in case of alkalis and acids in the chemical industry

Black

from -10°C to +80°C

TA-Luft (German Clean Air Act)

Applications of CSM vulcanized materials can be found in the chemical industry, in chemical cleaning etc.

FKM

Application in case of higher temperatures (Viton is the brand name of DuPont® for FKM) in the chemical industry

Brown

from -20°C to +200°C

TA-Luft (German Clean Air Act)

Due to the good resistance against acids and alkalis, the main use is in the area of chemistry and their users.

Function and durability

The function of KLINGER Gaskets mainly depends on the storage and installation conditions on which, we as a supplier, do not have any influence.

That is why we only ensure perfect condition of the material.

Please also observe our installation instructions on this. In case there are special approval regulations, they have to be observed.

As for other media or application conditions, we would be glad to provide you with further information.

Product range of Rubber-Metal-Gaskets

Gaskets for flanges with a smooth sealing surface, Shape A - EN 1092, and with sealing strip, Shape B - EN 1092 acc. to DIN EN 1514-1, Shape IBC (Inner Bolt Circle) Dimensions acc. to the Standard in mm

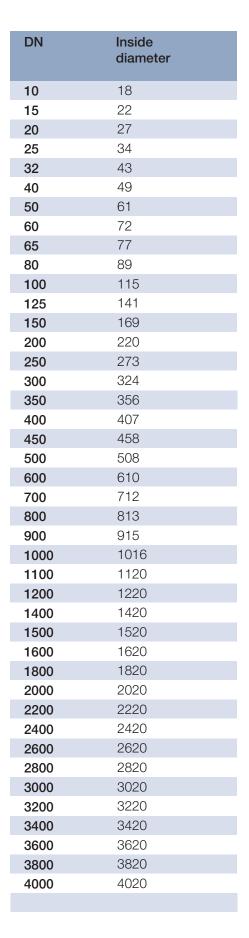
Available dimensions on request, or please see our actual price list.

KLINGER®KGS

KLINGER®KGS/S

KLINGER®KGS/TK

KLINGER®KGS-Flon



KLINGER®KGS/TK-Flon

KLINGER®KNS

Compression stop gasket

Product range of Rubber-Metal-Gaskets

1 / 2.5	6	10	16	25	40	63
20	200	40	40	40	40	F.C.
39	39	46	46	46	46	56
14 - <i>1</i>	44	51	51	51	51	61
54	54	61	61	61	61	72
54 	64	71	71	71	71	82
76	76	82	82	82	82	88
36	86	92	92	92	92	103
96	96	107	107	107	107	113
106	106	117	117	117	117	123
116	116	127	127	127	127	138
132	132	142	142	142	142	148
152	152	162	162	168	168	174
182	182	192	192	194	194	210
207	207	218	218	224	224	247
262	262	273	273	284	290	309
317	317	328	329	340	352	364
373	373	378	384	400	417	424
423	423	438	444	457	474	486
473	473	489	495	514	546	543
528	528	539	555	564	571	_
578	578	594	617	624	628	_
679	679	695	734	731	747	_
784	784	810	804	833	_	_
390	890	917	911	942	_	-
990	990	1017	1011	1042	_	_
1090	1090	1124	1128	1154	_	_
_	_	1231	1228	1251	_	_
1290	1307	1341	1342	1364	_	_
1490	1524	1548	1542	1578	_	_
-	_	1658	1654	1688	_	_
1700	1724	1772	1764	1798	_	_
1900	1931	1972	1964	2000	_	_
2100	2138	2182	2168	2230	_	_
2307	2348	2384	_	_	_	_
2507	2558	2592	_	_	_	_
2707	2762	2794	_	_	_	_
2924	2972	3014	_	_	_	_
3124	3172	3228	_	_	_	_
3324	3382	-	_	_	_	_
3524	3592	_	_	_		_
3734	3804					_
	3004	_	_	_	_	_
3931 4131	_	_	_	_	_	_

Media resistance of rubber-metal-gaskets

Medium	NR	NBR	EPDM	CSM	FKM	Medium	NR	NBR	EPDM	CSM	FKM
Acetaldehyde	•					Clorotrifluoride				A	
Acetamide						Condensation water					
Acetic acid						Copper acetate					
Acetic acid ester						Copper sulphate					
Acetone	•					Creosote					
Acetylene						Cresol					
Adipic acid						Crude oil					
Air						Cyclohexanol					
Alum						D ecahydronaphthalen					
Aluminium acetate						Dibenzyl ether					
Aluminium chlorate						Dibutyl phthalate					
Aluminium chloride						Diesel oil					
Ammonia						Dimethyl formamide					
Ammonium carbonate						Diphyl					
Ammonium chloride						Ethane					
Ammonium diphosphate						Ethanol					
Ammonium hydroxide						Ethyl acetate		A			
Amyl acetate						Ethyl alcohol					
Aniline						Ethyl chloride					
Anon cyclohexanone						Ethyl ether					
Arcton 12						Ethylendiamine					
Arcton 22						Ethylene					
Asphalt						Ethylene chloride					
Aviation fuel						Ethylene glycol					
Barium chloride						Fluorine dioxide				Ī	T
Benzene						Fluorine gaseous					
Benzoic acid						Fluorine liquid (dry)					
Blast furnace gas						Fluorosilicic acid					
Bleaching solution	T					Formaldehyde					
Boiler feed water	T					Formamide					
Borax						Formic acid 10%					T.
Boric acid						Freon 12		T			
Brine						Freon 22					T.
Butane						Fuel oil (crude oil basis)					T
Butanol			_			Generator gas	T		T	T	
Butanone		T.				Glacial acetio acid					
Butyl acetate	T	T		T		Glycerin		_			
Butylamine	T	T		T	T	Heating oil					
Butyle alcohol			<u> </u>			Heptane	T		T	T	
Butyric acid		T.				Hydraulic oil (mineral-based)	T		T	T	
Caesium melt	T	T		T	T	Hydraulic oil (phosphat ester)				T	
Calcium chloride						Hydrazine hydrate	T				
Calcium hydroxide						Hydrochloric acid (10%)					
Calcium hypochlorit						Hydrochloric acid (37%)					
Calcium sulphate	T					Hydrofluorid acid	T	T			
Carbolic acid						Hydrofluosilic acid					
Carbon dioxide						Hydrogen					
Carbon disulphide	I					Hydrogen chloride (dry)					
Carbon tetrachlorid						Hydrogen peroxide 3%					
Castor oil						Hydrogen peroxide 90%			T .		
Chlorine water						Hydrogen sulfide					
Chlorine, dry						Isooctane					
Chlorine, moist						Isopropyl alcohol					
						Kerosene					
Chloroform Chromic acid											
						Lactic acid					
Citric acid						Lead acetate					

Media resistance of rubber-metal-gaskets

Medium	NR	NBR	EPDM	CSM	FKM	Medium
Lead arsenate						Skydrol 500, 7000
Linseed oil						Soap, solution
Lithium melt	T		T.	T		Soda
Magnesium sulphate						Sodium aluminate
Malic acid						Sodium bicarbonate
MEK butanone	T					Sodium bisulphite
Methane	T			1		Sodium chloride
Methyl alcohol			-			Sodium cyanide
Methyl chloride	T	T				Sodium hydroxide
Methylene chloride	1	T	T	1		Sodium melt
Mineral oil	T					Sodium silicate
Monochlorethane	T		T			Sodium sulfide
N aphtha	T					Sodium sulphate
Natural gas	T	-	T			Spirit
Nitric acid			T	T		Starch
Nitrobenzene	T	T		1		Steam (max. 150 °C)
Nitrogen						Stearic acid 100°C
Octane (n)						Sugar
Oil						Sulphur dioxide
Oleanolic Acid			—			Sulphuric acid
Oleic acid						·
	1			1		Sulphurous acid Table salt
Oxalic acid						Table sait Tannic acid
Oxygen, gaseous, cold	1					
Palmitic acid						Tannin
Patable water				_		Tar
Pentane						Tartaric acid
Perchlorethylene						Tetrachloroethane
Petroleum		_				Tetrahydronaphthale
Petroleum benzin			_			Toluene
Petrol ether		•	1			Town gas (benzene free)
Phenol		_				Transformer oil
Phosphoric acid						Trichloroethylene
Polychl.biphenyls.	_			_		Triethanolamine
Potassium chromium sulphate						Turpentine
Potassium acetate				1	1	Urea
Potassium carbonate	•	•				Vinyl acetate
Potassium chlorate	Ţ			•		Water 100°C
Potassium chloride		•				Water flask
Potassium cyanide	_		•			Water vapour (max. 150°C)
Potassium dichrom.			•			White spirit
Potassium hydroxide			•	•	_	Xylene
Potassium hypochlorite		A				
Potassium iodide	•	•	•	•	•	It to and a secondary to a second
Potassium melt		A	A			It is not possible to select the right sealing material by ju
Potassium nitrate	A	•	•	•		this media resistance table!
Potassium nitrite		•	•			Please use the KLINGER
Potassium permanganate		A	•		•	documentation for making a
Propane						decision.
Pydraul C	A	A		A	•	
Pydraul E						
Pyridine		A				
Rape seed oil		•				
Rubidium melt		A				
Salicylic acid						
Sea water		•	•	•		Subject to technical changes
Silicon oil						Status: May 2015
						, _0.0

NBR EPDM CSM FKM

just using safe

▲ Not recommended Conditionally recommended Resistant

Installation instructions for rubber-metal-gaskets

The following instructions have to be observed so that a reliable sealing connection can be ensured.

1. Gasket selection

The suitable material quality can be selected from the KLINGER® information sheet - above all, from the resistance chart.

2. Flanges

Flanges should be parallel, metallic, clean and dry, the gasket has to be mounted centrically.

Please ensure the correct gasket dimensions.

The gasket should never tower into the throughhole (media flow)!

The outer diameter of the KLINGER®KGS gasket is adapted to the bolt circle of the flange. Therefore safe centering at the screws is ensured.

3. Installation

The installation of the gaskets should be carried out without using any grease or oil containing separating/sealing agents or similar.

In no case, oil or grease containing products may be used, because they have a negative influence on the safety of the whole flange connection..

4. Screws

When installing the screws, they have to be tightened evenly in two to three steps crosswise.

The screws should be lubricated. Pay attention to the tightening torques.

5. Retightening

"Retightening" is not required if these instructions are followed.

6. Multiple use

For reasons of safety, the multiple use of gaskets is generally not recommended.

On request, please make use of advice of the KLINGER GmbH!

KLINGER offers you excellent sealing products for all fields of application

KLINGER®KGS

KLINGER®KGS/TK

KLINGER®KGS-Flon

KLINGER®KGS/MK

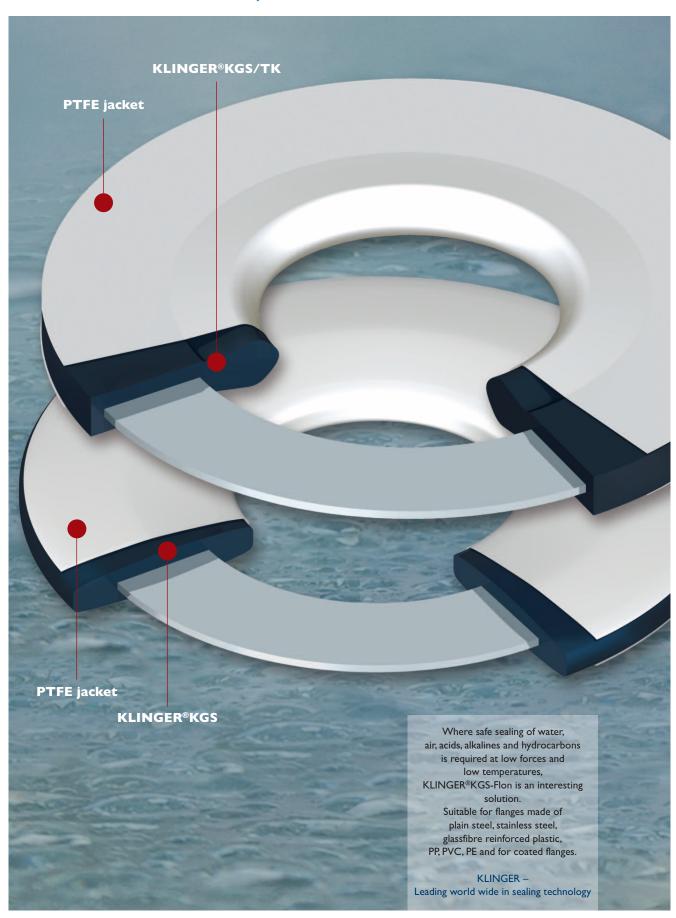
KLINGER®KGS/VD

KLINGER®KNS

Certified according to **DIN EN ISO 9001:2008**

Subject to technical changes. No responsibility is accepted for the accuracy of this information.

Status: May 2015



KLINGER®KGS-Flon

Rubber-Metal-Gasket with PTFE jacket

KLINGER®KGS-Flon

Rubber-Metal-Gasket with PTFE jacket

All additional data please see in the main KLINGER®KGS-leaflet with Technical Data. There you will find the sizes according to EN 1514-1 as well as the chemical resistance table of the various elastomers.

The available sizes you can find in your actual price list or please contact us.

Example for order

for KLINGER®KGS-Flon Form IBC DN 100, PN 10-16 or for KLINGER®KGS/TK-Flon DN 100, 105 x 162 **Gasket material**

EPDM ethylene-propylene-rubber

developed in accordance with the main European

drinking water requirements.

Very good properties of resistance against ozon and

ageing.

Material for the

jacket

Virginal PTFE up to DN 900 modified PTFE from DN 1000

Description of KGS and

KGS and KGS/TK gaskets

KGS: Rubber gasket with metal core,

lens-form rounded at the edges, suitable for good

reception of the surface loads.

KGS/TK: Rubber gasket with metal core,

lens-form with molded spear tip at the inner rim,

square at the edges.

Application field

Safe sealing of pipe systems where aggresive fluids

are flowing.

Specially suitable for coated flanges and plastic flanges

in PE, PP, PVC and GRP.

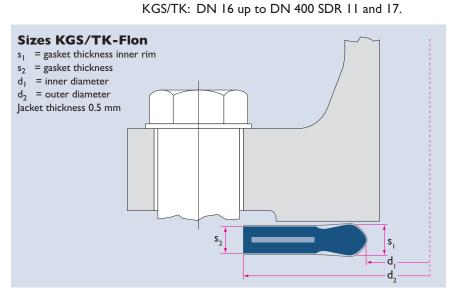
PTFE is quite against all fluid resistant.

Certificates and agreements

Virginal PTFE tested acc. to 21 CFR 177.1550 FDA,

test BAM with oxygen,

the gasket fulfils the requirements of the German


TA-Luft.

Dimensions

KGS: DN 15 up to DN 2000 acc. to EN 1514-1.

Certified according to DIN EN ISO 9001:2008

Klinger Portugal, Lda. Via José Régio, 36 Centro Empresarial Vilar do Pinheiro 4485-860 Vila do Conde T: +351 22 947 0910 E-mail: geral@klinger.pt

> Delegação Lisboa Rua de Cabo Verde, 8 Prior Velho 2685-316 T: +351 21 940 6620 E-mail: lisboa@klinger.pt